Product Code Database
Example Keywords: the legend -coat $45-136
barcode-scavenger
   » » Wiki: Vector Potential
Tag Wiki 'Vector Potential'.
Tag

Vector potential
 (

 C O N T E N T S 

In , a vector potential is a whose curl is a given vector field. This is analogous to a , which is a scalar field whose is a given vector field.

Formally, given a vector field \mathbf{v}, a vector potential is a C^2 vector field \mathbf{A} such that \mathbf{v} = \nabla \times \mathbf{A}.


Consequence
If a vector field \mathbf{v} admits a vector potential \mathbf{A}, then from the equality \nabla \cdot (\nabla \times \mathbf{A}) = 0 ( of the curl is zero) one obtains \nabla \cdot \mathbf{v} = \nabla \cdot (\nabla \times \mathbf{A}) = 0, which implies that \mathbf{v} must be a solenoidal vector field.


Theorem
Let \mathbf{v} : \R^3 \to \R^3 be a solenoidal vector field which is twice . Assume that \mathbf{v}(\mathbf{x}) decreases at least as fast as 1/\|\mathbf{x}\| for \| \mathbf{x}\| \to \infty . Define \mathbf{A} (\mathbf{x}) = \frac{1}{4 \pi} \int_{\mathbb R^3} \frac{ \nabla_y \times \mathbf{v} (\mathbf{y})}{\left\|\mathbf{x} -\mathbf{y} \right\|} \, d^3\mathbf{y} where \nabla_y \times denotes curl with respect to variable \mathbf{y}. Then \mathbf{A} is a vector potential for \mathbf{v}. That is, \nabla \times \mathbf{A} =\mathbf{v}.

The integral domain can be restricted to any simply connected region \mathbf{\Omega}. That is, \mathbf{A'} also is a vector potential of \mathbf{v}, where \mathbf{A'} (\mathbf{x}) = \frac{1}{4 \pi} \int_{\Omega} \frac{ \nabla_y \times \mathbf{v} (\mathbf{y})}{\left\|\mathbf{x} -\mathbf{y} \right\|} \, d^3\mathbf{y}.

A generalization of this theorem is the Helmholtz decomposition theorem, which states that any vector field can be decomposed as a sum of a solenoidal vector field and an irrotational vector field.

By with the , \mathbf{A''}(\mathbf{x}) also qualifies as a vector potential for \mathbf{v}, where

\mathbf{A''}(\mathbf{x}) =\int_\Omega \frac{\mathbf{v}(\mathbf{y}) \times (\mathbf{x} - \mathbf{y})}{4 \pi |\mathbf{x} - \mathbf{y}|^3} d^3 \mathbf{y}.

Substituting \mathbf{j} () for \mathbf{v} and \mathbf{H} () for \mathbf{A}, yields the Biot-Savart law.

Let \mathbf{\Omega} be a centered at the point \mathbf{p}, where \mathbf{p}\in \R^3. Applying Poincaré's lemma for differential forms to vector fields, then \mathbf{A'''}(\mathbf{x}) also is a vector potential for \mathbf{v}, where

\mathbf{A'''}(\mathbf{x}) =\int_0^1 s ((\mathbf{x}-\mathbf{p})\times ( \mathbf{v}( s \mathbf{x} + (1-s) \mathbf{p} ))\ ds


Nonuniqueness
The vector potential admitted by a solenoidal field is not unique. If \mathbf{A} is a vector potential for \mathbf{v}, then so is \mathbf{A} + \nabla f, where f is any continuously differentiable scalar function. This follows from the fact that the curl of the gradient is zero.

This nonuniqueness leads to a degree of freedom in the formulation of electrodynamics, or gauge freedom, and requires .


See also
  • Fundamental theorem of vector calculus
  • Magnetic vector potential
  • Solenoidal vector field
  • Closed and Exact Differential Forms

  • Fundamentals of Engineering Electromagnetics by David K. Cheng, Addison-Wesley, 1993.

Page 1 of 1
1
Page 1 of 1
1

Account

Social:
Pages:  ..   .. 
Items:  .. 

Navigation

General: Atom Feed Atom Feed  .. 
Help:  ..   .. 
Category:  ..   .. 
Media:  ..   .. 
Posts:  ..   ..   .. 

Statistics

Page:  .. 
Summary:  .. 
1 Tags
10/10 Page Rank
5 Page Refs